
Multipoint correlators of the impenetrable Bose gas

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1993 J. Phys. A: Math. Gen. 26 5189

(http://iopscience.iop.org/0305-4470/26/20/007)

Download details:

IP Address: 171.66.16.68

The article was downloaded on 01/06/2010 at 19:50

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/26/20
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


1. Phys. A: Math. Gen. 26 (1993) 51894196. FTinted in the UK 

Multipoint correlators of the impenetrable Bose gas 

B T Matkarimovt 
Institute of Nuclear Physics, Novosibirsk-90, Russia 

Received 2 October 1992 

Abstract. The multipoint time.dependent correlation functions of the impenetrable Bose 
gas are considered. The determinant formula for the correlation fundions with an arbitrary 
order of field operators is proposed. 

1. Introduction 

The one-dimensional non-relativistic Bose gas with point-like interaction between 
particles is a well-known model. It was intensively investigated by many authors for 
several decades [l-3,8]. The Hamiltonian of this model is the following: 

COD 

dz(YTY',+ c'P+Y+YW - hY+Y). (1.1) H = L  

Here Y'(z), "(2) are canonical Bose fields, [Y(x), Y+(y)]  = S(x-y), c is a coupling 
constant and h is a chemical potential. The model is generally considered in a box of 
length L with periodical boundary conditions. The impenetrable Bose gas corresponds 
to the model with an infinite value for the coupling constant, c = +m, and it is known 
to be equivalent to free fermions [1,3,8]. 

N-particle eigenfunctions of the Hamiltonian (1.1) at c = m were constructed in [2]: 

The norm of the wavefunction is given by (YIY) = LN. At zero temperature, = 25774 L 
by the periodic boundary conditions. The distribution of particles with momenta p in 
the thermodynamic limit N, L + m  with finite density D =  N / L  in the state of the 
thermal equilibrium at temperature T>O is given by the Fermi weight 9 ( p ) =  
[l+exp(E(p)/T)]-',wheretheenergyE(p) = p 2 - h .  At zerotemperature,themomen- 
tum p fills the interval [-q, q]  (Fermi sphere) with q=  TD. 

Recently, Its, Izergin, Korepin and Slavnov [4-61 represented the spacetime-depen- 
dent correlation functions of fields in an impenetrable Bose gas by the Fredholm 
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determinants. They also demonstrated that the potentials connected with correlators 
obey the system of nonlinear evolution equations. These results are of great interest 
in the theory of the one-dimensional Bose gas as well as in the general theory of the 
quantum and classical inverse spectral transform. Note that in [4-61, correlators of 
only a very special form were considered, namely the equal time temperature-dependent 
correlators of the form (rIrSl Yu'(xi)nf',+,Y(xj)) and the general time-dependent 
correlators ( ~ L Y h ,  ~ d ~ + ( x ~ ,  t2k-I)). 

In the present paper we will consider the multipoint time-dependent correlation 
functions with an arbitary order of fields 

( . . .Yr . .  . YL . . . )=((PlP))-1(Pl.. .Y,(zr, ti). . .Y:(z*,  f*) . . . P)  

where 10) is the ground state with finite density and the number of Y or Y+ is equal 
to p by the conservation of particle numbers. Thkre are C;, correlation functions of 
such a type. 

The method we use is closely related to that in [4-61. But we use a different 
representation of the field form factor. This new representation allows us to find the 
determinant formulae for the correlators with an arbitrary order of fields. They are of 
the from 

(1.4) 
where minor ( W )  is the p x p minor of the 2 p  x 2p matrix W (matrix of the potentials), 
and det(l+ K )  is the Fredholm determinant of the Fredholm operator I +  K. 

In the particular cases considered in [4-61 our formulae coincide with those in 
[4-61. For the simplest correlators one has 

( . . .Y(z ; .  f i )  ... Y'(z,, t k )  ... ) = ( 2 a ) - P ( m i n ~ r { ~ ) d e t ( l + K )  

(Y(O,O)Y+(x, I))  = (2a)-'b++(x, t )  det(l+ K )  (1.5) 

that is, the result of [SI. In the present paper we also find that 

(Y'(O,O)Y(x, f ) )= (2a ) - 'L (x ,  f )  det(l+K). (1.6) 
The minors (potentials) b,, and b-- of the 2 x 2  matrix W obey the system of 

nonlinear differential equations that was also obtained in [4]; this system generalizes 
the fifth Painleve transcendent and is equivalent to the classical nonlinear Schrodinger 
equation. In the general case we demonstrate that the elements of matrix W obey the 
system of nonlinear multidimensional equations. The corresponding auxiliary linear 
problem is found. 

In [7] the matrix Rieman problem for the multipoint equal time temperature 
correlators was constructed. We demonstrate that the matrix Rieman problem of such 
a type can be used for the time-dependent temperature correlators. 

2. Multipoint correlation functions 

Let us consider the multipoint time-dependent correlation functions with an arbitrary 
orderoffields( ... Y r . .  .Y; ...)= ((PlCl))-'(Pl ... Y;(zi,ti) ... Yl(zk ,  tk )  ...I 0).The 
spacetime dependence of the field operators in the correlators is ordered in the following 
manner: the Grst left field operator depends on x , ,  t , ,  the second depends on n2, t2, 
and so on. 

The function X N ( x ,  f, A )  with arbitrary A. =27m/L forms the complete set 
of functions. The first step to calculate the correlator is to insert the unit oper- 
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ators I = ( (YN lYN))-' Z, IYN)(YNI into the finite-particle correlator (. . J N  = 
( Y N ~ . .  . IYN)/ (YNIY~)  and then calculate the thermodynamic limit L, N+W. The 
form factor F(x, tlA, P) = (yN+l(.\)I*+(~ f ) I Y ~ ( P ) ) / ( Y N ( C L ) I Y N ( P ) )  was calculated 
in [5 ] .  We represent it in a different form by introducing the fictitious momentum 
p N + l .  This trick is very useful for the following calculations: 

where 

e(x,  t, A)=exp[i(tA2-xA)] (2.2) 

e*(? t, A )  is the complex conjugate of e(x, t, A )  and detN{n.,} is the determinant of 
the N x N matrix A with elements a",,,. 

So, the correlator (. . J N  can be represented as a sum over the form factor product, 
i.e. 

where Yi=Y(x i ,  t i ) ,  YT=Y+(xi,  ti) and the summation is over A k = 2 m / L  where 
i = 1,. . . ,2p - 1, n is an integer, and the sets {A'} and {AZp} are equivalent. The sets 
{A'} and ( A z p )  directly correspond to the ground state IO), and at zero temperature 
these sets are finite: A,, - q, Amin - -4. 

To calculate (2.3) one has to represent the determinant product in (2.3) as the 
determination of one matrix. Since the matrices in (2.3) are of different ranks it is 
necessary to decompose some determinants over one or more columns or rows. As 
was done in [SI, we use the following relation: 

Using the technique of [SI we calculate the sum in (2.3) over a A n  where n is an odd 
number. There are four different cases which correspond to the following combinations 
of the field operators: Y+Y+, Y'Y, YY', YY. The direct calculation demonstrates 
that after summation on A" and calculation of an infinite limit for all fictitious momenta, 
the result can be presented as the convolution of some universal matrix An,,, with four 
different vector functions. 

Let us introduce the following notation and the functions & ( A )  and Gix(A): 

et(&, = d x i ,  t i ,  A )  (2.5) 

eir(xi, 4 ,  xk, t r l A ) =  ei(A)ef(A) (2.6) 



(2.10) 

Here is the Kroneker symbol. 
Summation over other Ai ( i  is an even number) is carried out in the same manner. 

We have the correlator as a convolution of the p x p  minor of some matrix K,. with 
some functions e:(.\), e;(A). In the next step one can decompose the p x p  minor of 
the matrix K over 1 x 1 minors by the Leibnitz rule and calculate the thermodynamic 
limit. In this limit [5] 

(2.11) 

Note that the final summations are made on the finite interval [-q,  +q] ,  and in the 
thermodynamic limit we represent the 1 x 1 minor as the resolvent of the Fredholm 
operator. 

Let us introduce the following functions: 

+DO 

Gps(x,,, x,, tp. t.) = I-, dP eps(p) 

Let us also introduce the linear integral operator with a kemel: 

where 

The kemel K(A,p )  can be represented by the following: 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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where the functions e:(h),  e ; @ )  are defined as 

(2.17) 

Here s = l ,  . . . , p  and 

Sm(Am, A m - i )  = 6 ( A m - h m - i )  + K m ( h m ,  hm-l)e:,(h,.)e2m-l(hm-I). 

The Fredholm operator (2.14), acting on the finite interval [ -q ,  +q], was introduced 
in [4], its kernel K(A,  p) (2.14) has a very special form-it is the convolution of similar 
kernels. This property can be used to prove (2.16) by induction. We also introduce 
the functions f : ( h ) ,  f ; ( A )  as solutions of the following integral equations: 

The integral operator with the kernel R(A,  p), 

(2.18) 

(2.19) 

(2.20) 

is the resolvent of the operator K ( A , p ) .  We then introduce the 2px2p matrices V 
and H :  

V A x ,  t )  = (-1)" (2.21) 

where n = 2 k -  1, m =2k, k EN 
other n, k. (2.22) H A x ,  t )  = 

The 2p correlation functions correspond to the p x p  minors of the matrix Vf  H. 
The formulae (2.9) allow us to establish the following role to obtain a minor of 

the potential's matrix V +  H which corresponds to a given correlation function: if the 
ith field operator in correlator is +(+') we delete the ith column (row) in the matrix 
V +  H. Remained rows and columns form the mentioned minor, i.e. (a )++)  - (V+ H ) 1 2 ,  

(. . .)=(2.~)-~(minor( V+H))det K ( h , p ) .  (2.23) 

The temperature correlation functions are similar to the obtained correlators. In 
the case of non-zero temperatures, the Fredholm operator with the kernel K ( h ,  p)  acts 

( + + $ ) - ( V +  w 2 1 .  
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on the whole axis, but the integral part of the kernel K(A,  p )  must be changed [5,8]: 

where 9 ( A )  is the Fermi weight. 

K ( A ,  p) ,  similarly to (2.18) and obey the following equations: 
The functionsf+(x, t l A ) , f - ( x ,  tip) form the kernel of the resolvent of the operator 

The matrix of the potentials V., is now defined as the following: 
+li 

V A x ,  t )  = (-1)“ I-, d p  4(p)eXq t lp ) fL(x ,  [Id. (2.27) 

Then (2.23) with rescaled K ( h ,  p),  V.,(x, t )  is valid for the temperature correlation 
functions. 

3. Differential equations for the correlation functions 

The Fredholm determinant representation for the correlation functions permits us to 
derive nonlinear differential equations for the potentials V, ,  [4]. Let us consider 
(2.18) as a system of integral equations for the vector function F(x, t Jh)=  
( f + ( A l ) ,  . . . , f + ( A Z p ) ) .  Differentiating this system with respect to x. and tm and using 
the Fredholm alternative we derive the system of equations 

where Ln and M, are linear differential matrix operators, n, m = 1 , .  . . ,2p, d,. = i dfdx. 
and d, = i dfdt.. 

The compatibility conditions of systems (3.1) and (3.2) lead us to the multi- 
dimensional nonlinear differential equations for the potentials Vnm. 

To derive the matrix operators L and M one can use the following relations: 

d,.e;(x, t l h ) = A S n k e : ( A ) t A ~ ( x ,  t)e:(A) (3.3) 

d,K(A, p) =(- l )“e: (A)eh)  (3.4) 

d,.e:(x, t l A ) =  -A’G.ke:(h)-AAGe,(A)+B~(X, f)e:(A) (3.5) 

P )  = -(-1)”(A +p)e:(A)e;(p)  -(-l)’AF,e:(A)e;(p). (3.6) 

Here A ” ( q  I )  and B”(q t )  are some matrices which are defined by (3.3)-(3.6), and 
we assume summation over the indices s and p.  

So, (3.1) and (3.2) have the following form: 

dxmf:(A) = A & k f k ( A ) +  (&vsk  -&.Vnk t A”,f:(h) (3.7) 

dtnh(A) = -A2&fX(A\)  -A(&kV,x-&.V., + AL)f : (A)  
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(3.9) 

The temperature correlation functions can be described in terms of the matrix 
Riemann problem, similarly to the equal time correlators [7]: one has to find the 2 p  x 2 p  
matrix valued function X(A)  which is holomorphic for Im A < 0 and Im A > 0, and are 
related at the real axes by 

X-(A)= X+(A)G(A) (3.10) 

where X*(A) = lim X(A *is), E + 0 ,  E > 0, and X(A)  is equal to the unit matrix at 
A+m: X ( m ) =  I. The conjugating matrix G(A) has the following elements: 

G.x(x, t l A ) =  snk+(-l)"e:(x, dA)eL(x, d A ) % O .  (3.11) 

The matrix Riemann problem is equivalent to the system of singular integral equations: 

(3.12) 

Equations (3.12) with the conjugating matrix G (3.11) are equivalent to the system of 
equations (2.25) [7]. The matrix X(A)  at A+CC can be expanded as 

(3.13) X(A)  = I+Yl(x, t ) / A + .  . . . 
The potentials V., are related to the matrix Yl(x, 1 )  [7]: 

V, = -iY Ink(x, t). (3.14) 

Note that the adjoint Fredholm operator K'(A, p)  = K ( p ,  A) (see (2.14)) also describes 
quantum 2p point correlation functions but with a different spacetime dependence, 
~ i + - + ~ + , - ~ ,  t j + - f 2 p + l - i .  The general index of the matrix Riemann problem (3.10) 
IS zero. 
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